Connecting the world with professional
Fiber Optic Solutions

fiber optic transceiver special topic

Certificate

FCC

 

CE

 

ROHS

Guarantee

Except products belongs to Bargain Shop section, all products are warranted by SOPTO only to purchasers for resale or for use in business or original equipment manufacturer, against defects in workmanship or materials under normal use (consumables, normal tear and wear excluded) for one year after date of purchase from SOPTO, unless otherwise stated...

Return Policies

Defective products will be accepted for exchange, at our discretion, within 14 days from receipt. Buyer might be requested to return the defective products to SOPTO for verification or authorized service location, as SOPTO designated, shipping costs prepaid. .....

Applications

fiber optic transceiver and FTTHFiber Optic Transceiver Modules can be applied to these occasions or fields.

  • Ethernet

  • IPTV

  • FTTX

  • Security

  • Video Monitor

  • SDH/SONET

  • Data Communication

  • Storage Area Networks

 

SNS Page

  • sopto facebook
  • sopto twitter
  • sopto linkedin

Related Products

10G SFP+ Transceiver 10G SFP+ Transceiver
 
10G XENPAK 10G XENPAK
 
40G QSFP+ Transceiver 40G QSFP+ Transceiver
 

Performance Feature

Stable

Low cost

Small size

Economic

Dust-proof

High speed

Hot-pluggable

Good EMI, EMC

Wide appliaction field

DDM function available

Long transmission distance

Good Anti-static performance

Module Knowledge

Recommended

SFP+ LC Patch Cord

 

SFP+ DWDM Mux Demux

Laser Diode Performance Characteristics

 

Several key characteristics lasers determine their usefulness in a given application. These are:

 

Peak Wavelength:

 

This is the wavelength at which the source emits the most power. It should be matched to the wavelengths that are transmitted with the least attenuation through optical fiber. The most common peak wavelengths are 1310, 1550, and 1625 nm.

 

Spectral Width:

 

Ideally, all the light emitted from a laser would be at the peak wavelength, but in practice the light is emitted in a range of wavelengths centered at the peak wavelength. This range is called the spectral width of the source.

 

Emission Pattern:

 

The pattern of emitted light affects the amount of light that can be coupled into the optical fiber. The size of the emitting region should be similar to the diameter of the fiber core. Figure 2 illustrates the emission pattern of a laser.

 

Power:

 

The best results are usually achieved by coupling as much of a source's power into the fiber as possible. The key requirement is that the output power of the source be strong enough to provide sufficient power to the detector at the receiving end, considering fiber attenuation, coupling losses and other system constraints. In general, lasers are more powerful than LEDs.

 

Figure 2 - Laser Emission Pattern

laser Emission Pattern

 

Laser Emission Pattern

 

Speed: A source should turn on and off fast enough to meet the bandwidth limits of the system. The speed is given according to a source's rise or fall time, the time required to go from 10% to 90% of peak power. Lasers have faster rise and fall times than LEDs. Linearity is another important characteristic to light sources for some applications.

 

Linearity represents the degree to which the optical output is directly proportional to the electrical current input. Most light sources give little or no attention to linearity, making them usable only for digital applications. Analog applications require close attention to linearity. Nonlinearity in lasers causes harmonic distortion in the analog signal that is transmitted over an analog fiber optic link. Lasers are temperature sensitive; the lasing threshold will change with the temperature. Figure 3 shows the typical behavior of a laser diode.

 

As operating temperature changes, several effects can occur. First, the threshold current changes. The threshold current is always lower at lower temperatures and vice versa. The second change that can be important is the slope efficiency. The slope efficiency is the number of milliwatts or microwatts of light output per milliampere of increased drive current above threshold. Most lasers show a drop in slope efficiency as temperature increases.

 

Thus, lasers require a method of stabilizing the threshold to achieve maximum performance. Often, a photodiode is used to monitor the light output on the rear facet of the laser. The current from the photodiode changes with variations in light output and provides feedback to adjust the laser drive current.

 

Temperature Effects on Laser Optical Output Power

Emitters Characteristics

 

 

Figure 4a shows the behavior of an LED, and Figure 4b shows the behavior of a laser diode. The plots show the relative amount of light output versus electrical drive current. The LED outputs light that is approximately linear with the drive current. Nearly all LED's exhibit a "droop" in the curve as shown in Figure 4b.

 

This nonlinearity in the LED limits its usefulness in analog applications. The droop can be caused by a number of factors in the LED semiconductor physics but is often largely due to self-heating of the LED chip. All LED's drop in efficiency as their operating temperature increases. Thus, as the LED is driven to higher currents, the LED chip gets hotter causing a drop in conversion efficiency and the droop apparent in Figure 4a. LED's are typically operated at currents to about 100 mA peak. Only specialized devices operate at higher current levels.

 

Related Knowledge:

 

 

Guess Products You May Like:

 

155M 120KM BIDI WDM SFP optical modules 2.488/2.5G 1310/1550nm WDM BIDI SFP Transceiver Module 1.25G 1310/1490nm 20km BIDI WDM SFP Transceiver Module 1.25G 1310nm 10km SM LC SFP Fiber Optic Module
155M 1550/1490nm 120km BIDI WDM SFP Optical Moduel 2.488/2.5G 1310/1550nm WDM BIDI SFP Transceiver Module 1.25G 1310/1490nm 20km BIDI WDM SFP Transceiver Module 1.25G 1310nm 10km SM LC SFP Fiber Optic Module